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a b s t r a c t

The Cheng–Minkowycz problem of natural convection past a vertical plate, in a porous medium saturated
by a nanofluid, is studied analytically. The model used for the nanofluid incorporates the effects of
Brownian motion and thermophoresis. For the porous medium the Darcy model is employed. A similarity
solution is presented. This solution depends on a Lewis number Le, a buoyancy-ratio number Nr, a
Brownian motion number Nb, and a thermophoresis number Nt. The dependency of the Nusslelt number
on these four parameters is investigated.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The term ‘‘nanofluid‘‘ refers to a liquid containing a dispersion
of submicronic solid particles (nanoparticles). The term was coined
by Choi [1]. The characteristic feature of nanofluids is thermal con-
ductivity enhancement, a phenomenon observed by Masuda et al.
[2]. This phenomenon suggests the possibility of using nanofluids
in advanced nuclear systems (Buongiorno and Hu [3]).

A comprehensive survey of convective transport in nanofluids
was made by Buongiorno [4], who says that a satisfactory explana-
tion for the abnormal increase of the thermal conductivity and vis-
cosity is yet to be found. He focused on the further heat transfer
enhancement observed in convective situations. Buongiorno notes
that several authors have suggested that convective heat transfer
enhancement could be due to the dispersion of the suspended
nanoparticles but he argues that this effect is too small to explain
the observed enhancement. Buongiorno also concludes that turbu-
lence is not affected by the presence of the nanoparticles so this
cannot explain the observed enhancement. Particle rotation has
also been proposed as a cause of heat transfer enhancement, but
Buongiorno calculates that this effect is too small to explain the ef-
fect. With dispersion, turbulence and particle rotation ruled out as
significant agencies for heat transfer enhancement, Buongiorno
ll rights reserved.
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proposed a new model based on the mechanics of the nanoparti-
cle/base-fluid relative velocity.

Buongiorno [4] noted that the nanoparticle absolute velocity
can be viewed as the sum of the base fluid velocity and a relative
velocity (that he calls the slip velocity). He considered in turn se-
ven slip mechanisms: inertia, Brownian diffusion, thermophoresis,
diffusiophoresis, Magnus effect, fluid drainage, and gravity settling.
After examining each of these in turn, he concluded that in the ab-
sence of turbulent effects it is the Brownian diffusion and the ther-
mophoresis that will be important. Buongiorno proceeded to write
down conservation equations based on these two effects.

The problem of natural convection in a porous medium past a
vertical plate is a classical problem first studied by Cheng and
Minkowycz [5]. The problem is presented as a paradigmatic config-
uration and solution in the book by Bejan [6]. The extension to the
case of heat and mass transfer was made by Bejan and Khair [7].
Further work on this topic is surveyed in Sections 5.1 and 9.2.1
in Nield and Bejan [8]. A review of the heat transfer characteristics
of nanofluids has been made by Wang and Mujumdar [9].

In the present paper the model of [4] is applied to the problem
in [5].
2. Analysis

It is assumed that nanoparticles are suspended in the nanofluid
using either surfactant or surface charge technology. This prevents
particles from agglomeration and deposition on the porous matrix.
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Nomenclature

DB Brownian diffusion coefficient
DT thermophoretic diffusion coefficient
f rescaled nanoparticle volume fraction, defined by Eq.

(20)
g gravitational acceleration vector
km effective thermal conductivity of the porous medium
K permeability of the porous medium
Le Lewis number, defined by Eq. (27)
Nr buoyancy ratio, defined by Eq. (24)
Nb Brownian motion parameter, defined by Eq. (25)
Nt thermophoresis parameter, defined by Eq. (26)
Nu Nusselt number, defined by Eq. (32)
Nur reduced Nusselt number, Nu/Rax

1/2

p pressure
q00 wall heat flux
Rax local Rayleigh number, defined by Eq. (18)
s dimensionless stream function, defined by Eq. (20)
T temperature
Tw temperature at the vertical plate
T1 ambient temperature attained as y tends to infinity
v Darcy velocity, (u, v)

(x, y) Cartesian coordinates (x-axis is aligned vertically up-
wards, plate is at y = 0)

Greek symbols
am thermal diffusivity of the porous medium, km

ðqcÞf
b volumetric expansion coefficient of the fluid
e porosity
g similarity variable, defined by Eq. (19)
h dimensionless temperature, defined by Eq. (20)
l viscosity of the fluid
qf fluid density
qp nanoparticle mass density
(qc)f heat capacity of the fluid
(qc)m effective heat capacity of the porous medium
(qc)p effective heat capacity of the nanoparticle material

s parameter defined by Eq. (13), eðqcÞp
ðqcÞf

/ nanoparticle volume fraction
/w nanoparticle volume fraction at the vertical plate
/1 ambient nanoparticle volume fraction attained as y

tends to infinity
w stream function, defined by Eq. (14)
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We consider a two-dimensional problem. We select a coordinate
frame in which the x-axis is aligned vertically upwards. We con-
sider a vertical plate at y = 0. At this boundary the temperature T
and the nanoparticle fraction / take constant values Tw and /w,
respectively. The ambient values, attained as y tends to infinity,
of T and / are denoted by T1 and /1, respectively.

The Oberbeck-Boussinesq approximation is employed. Homo-
geneity and local thermal equilibrium in the porous medium is as-
sumed. We consider a porous medium whose porosity is denoted
by e and permeability by K. The Darcy velocity is denoted by v.
The following four field equations embody the conservation of to-
tal mass, momentum, thermal energy, and nanoparticles, respec-
tively. The field variables are the Darcy velocity v, the
temperature T and the nanoparticle volume fraction /.

r � v ¼ 0; ð1Þ
qf

e
@v
@t
¼ �rp� l

K
v þ ½/qp þ ð1� /Þfqf ð1� bðT � T1ÞÞg�g; ð2Þ

ðqcÞm
@T
@t
þ ðqcÞf v � rT ¼ kmr2T þ eðqcÞp½DBr/ � rT

þ ðDT=T1ÞrT � rT�; ð3Þ
@/
@t
þ 1

e
v � r/ ¼ DBr2/þ ðDT=T1Þr2T: ð4Þ

We write v = (u, v).
Here qf, l and b are the density, viscosity, and volumetric vol-

ume expansion coefficient of the fluid while qP is the density of
the particles. The gravitational acceleration is denoted by g. We
have introduced the effective heat capacity (qc)m, and the effective
thermal conductivity km of the porous medium. The coefficients
that appear in Eqs. (3) and (4) are the Brownian diffusion coeffi-
cient DB and the thermophoretic diffusion coefficient DT. Details
of the derivation of Eqs. (3) and (4) are given in the papers by
Buongiorno [4], Tzou [10,11] and Nield and Kuznetsov [12,13].
The flow is assumed to be slow so that an advective term and a
Forchheimer quadratic drag term do not appear in the momentum
equation.

The boundary conditions are taken to be

v ¼ 0; T ¼ Tw;/ ¼ /w at y ¼ 0; ð5Þ
u ¼ v ¼ 0; T ! T1;/! /1 as y!1: ð6Þ
We consider a steady state flow.
In keeping with the Oberbeck-Boussinesq approximation and

an assumption that the nanoparticle concentration is dilute, and
with a suitable choice for the reference pressure, we can linearize
the momentum equation and write Eq. (2) as

0 ¼ �rp� l
K

v þ ½ðqp � qf1Þð/� /1Þ þ ð1� /1Þqf1bðT � T1Þ�g:

ð7Þ
We now make the standard boundary-layer approximation, based
on a scale analysis, and write the governing equations
@u
@x
þ @v
@y
¼ 0; ð8Þ

@p
@x
¼ �l

K
uþ ð1� /1Þqf1bgðT � T1Þ � ðqp � qf1Þgð/� /1Þ

h i
ð9Þ

@p
@y
¼ 0; ð10Þ

u
@T
@x
þ v @T

@y
¼ amr2T þ s DB

@/
@y

@T
@y
þ DT

T1

� �
@T
@y

� �2
" #

; ð11Þ

1
e

u
@/
@x
þ v @/

@y

� �
¼ DB

@2/
@y2 þ

DT

T1

� �
@2T
@y2 : ð12Þ

where

am ¼
km

ðqcÞf
; s ¼

eðqcÞp
ðqcÞf

: ð13Þ

One can eliminate p from Eqs. (9) and (10) by cross-differentiation.
At the same time one can introduce a stream function w defined by

u ¼ @w
@y

; v ¼ � @w
@x

; ð14Þ

so that Eq. (8) is satisfied identically.We are then left with the fol-
lowing three equations.

@2w
@y2 ¼

ð1� /1Þqf1bgK
l

@T
@y
�
ðqp � qf1ÞgK

l
@/
@y

ð15Þ

@w
@y

@T
@x
� @w
@x

@T
@y
¼ amr2T þ s DB

@/
@y

@T
@y
þ DT

T1

� �
@T
@y

� �2
" #

; ð16Þ

1
e

@w
@y

@/
@x
� @w
@x

@/
@y

� �
¼ DB

@2/
@y2 þ

DT

T1

� �
@2T
@y2 : ð17Þ
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Fig. 1. Plots of dimensionless similarity functions s(g), s
0
(g)h(g), f(g) for the case

Le = 10, Nr = 0.5, Nb = 0.5, Nt = 0.5.

Table 1
Linear regression coefficients and error bound for the reduced Nusselt number. Here
Cr, Cb, Ct, are the coefficients in the linear regression estimate
Nuest=Ra1=2

x ¼ 0:444þ CrNrþ CbNbþ CtNt; and ê is the maximum relative error
defined by ê = |(Nuest � Nu)/Nu|, applicable for Nr, Nb, Nt each in [0, 0.5].

Le Cr Cb Ct ê

1 �0.309 �0.060 �0.166 0.154
2 �0.230 �0.129 �0.162 0.147
5 �0.148 �0.209 �0.152 0.126
10 �0.111 �0.245 �0.150 0.119
20 �0.086 �0.268 �0.149 0.114
50 �0.064 �0.288 �0.149 0.110
100 �0.053 �0.298 �0.148 0.108
200 �0.045 �0.304 �0.148 0.107
500 �0.039 �0.310 �0.148 0.106
1000 �0.036 �0.313 �0.148 0.107
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We now introduce the local Rayleigh number Rax defined by

Rax ¼
ð1� /1Þqf1bgKx

lam
; ð18Þ

and the similarity variable

g ¼ y
x

Ra1=2
x : ð19Þ

This choice is made on the basis of scale analysis (see Section 9.2.1
of Nield and Bejan [8]). Since most nanofluids examined to date
have large values for the Lewis number, we are interested mainly
in the case Le > 1. Also we are interested in the case where it is heat
transfer (rather than mass transfer) that is driving the flow. In the
present context this means that we are assuming that the buoy-
ancy-ratio parameter Nr defined by Eq. (24) below is small com-
pared with unity and that the Lewis number Le defined by Eq.
(27) is larger than unity. The reader is referred to Figure 9.5 and Ta-
ble 9.1 in [8], which are based on Figure 2 and Table 1 in [7].

We also introduce the dimensionless variables s, h, and f defined
by

sðgÞ ¼ w

amRa1=2
x

; hðgÞ ¼ T � T1
Tw � T1

; f ðgÞ ¼ /� /1
/w � /1

: ð20Þ

Then, on substitution in Eqs. (15)–(17), we obtain the ordinary dif-
ferential equations

s00 � h0 þ Nrf 0 ¼ 0; ð21Þ

h00 þ 1
2

sh0 þ Nbf 0h0 þ Nth02 ¼ 0; ð22Þ

f 00 þ 1
2

Lesf 0 þ Nt
Nb

h00 ¼ 0; ð23Þ

where the four parameters are defined by

Nr ¼
ðqp � qf1Þð/w � /1Þ

qf1bðTw � T1Þð1� /1Þ
; ð24Þ

Nb ¼
eðqcÞpDBð/w � /1Þ

ðqcÞf am
; ð25Þ

Nt ¼
eðqcÞpDTðTw � T1Þ
ðqcÞf amT1

; ð26Þ

Le ¼ am

eDB
: ð27Þ

Here Nr, Nb, Nt, Le denote a buoyancy ratio, a Brownian motion
parameter, a thermophoresis parameter, and a Lewis number,
respectively.

Equations (21)–(23) are solved subject to the following bound-
ary conditions:

At g ¼ 0 : s ¼ 0; h ¼ 1; f ¼ 1: ð28Þ
As g!1 : s0 ¼ 0; h ¼ 0; f ¼ 0: ð29Þ

Integrating Eq. (21) once and using boundary conditions (29) results
in

s0 � hþ Nr f ¼ 0; ð30Þ

Equations (30), (22), and (23) are solved subject to boundary condi-
tions at g = 0 given by Eq. (28) and the following boundary condi-
tions at g ?1:

Atg!1 : h ¼ 0; f ¼ 0: ð31Þ

When Nr, Nb and Nt are all zero, Eqs. (21) and (22) involve just
two dependent variables, namely s and h, and the boundary-value
problem for these two variables reduces to the classical problem
solved by Cheng and Minkowycz [5]. (The boundary-value problem
for f then becomes ill-posed and is of no physical significance.)
A quantity of practical interest is the Nusselt number Nu de-
fined by

Nu ¼ q00x
kmðTw � T1Þ

; ð32Þ

where q00 is the wall heat flux and km is the effective thermal con-
ductivity of the porous medium. In the present context Nu/Rax

1/2

is represented by �h
0
(0). (Likewise the dimensionless mass flux is

represented by a Sherwood number Sh which is proportional to
�f 0(0), but this of lesser interest here.)
3. Results and discussion

Plots of the similarity variables for a typical case, chosen as that
for Le = 10, Nr = 0.5, Nb = 0.5, Nt = 0.5, are shown in Fig. 1. The
boundary-layer profiles for the temperature function h(g) and the
stream function s(g) have essentially the same form as in the case
of a regular fluid. The thickness of the boundary-layer for the mass
fraction function f(g) is smaller than the thermal boundary-layer
thickness when Le > 1. It is well known that, in the case of a regular
fluid, the profile for ds/dg (something that represents the longitu-
dinal component of the velocity, u) is identical with that for the
temperature h. We now see that in the case of a nanofluid the
two profiles diverge within a layer whose thickness is comparable
with that of the mass fraction.



Table 2
Quadratic regression coefficients and error bound for the reduced Nusselt number. Here Cr1, Cr2, Cb1, Cb2, Ct1, Ct2, Cbt, Ctr, and Crb are the coefficients in the quadratic regression
estimate Nuest=Ra1=2

x ¼ 0:444þ Cr1Nrþ Cb1Nbþ Ct1Ntþ Cr2Nr2 þ Cb2Nb2 þ Ct2Nt2 þ CbtNbNtþ CtrNtNrþ CrbNrNb; and ê is the maximum relative error defined by
ê = |(Nuest � Nu)/Nu|, applicable for Nr, Nb, Nt each in [0, 0.5].

Le Cr1 Cb1 Ct1 Cr2 Cb2 Ct2 Cbt Ctr Crb ê

1 �0.353 �0.020 �0.223 �0.040 �0.381 0.067 0.284 �0.122 0.451 0.066
2 �0.249 �0.130 �0.206 �0.066 �0.279 0.040 0.268 �0.102 0.397 0.100
5 �0.160 �0.251 �0.192 �0.028 �0.064 0.042 0.162 �0.014 0.206 0.035
10 �0.115 �0.306 �0.189 �0.016 0.017 0.042 0.135 0.007 0.134 0.014
20 �0.083 �0.344 �0.187 �0.009 0.065 0.041 0.124 0.0135 0.091 0.007
50 �0.055 �0.375 �0.186 �0.004 0.103 0.041 0.121 0.014 0.056 0.007
100 �0.041 �0.390 �0.186 �0.001 0.119 0.041 0.121 0.013 0.040 0.006
200 �0.031 �0.400 �0.185 0.001 0.130 0.041 0.121 0.012 0.029 0.006
500 �0.022 �0.409 �0.185 0.003 0.139 0.041 0.122 0.010 0.020 0.006
1000 �0.018 �0.413 �0.185 0.004 0.143 0.041 0.123 0.009 0.016 0.006

D.A. Nield, A.V. Kuznetsov / International Journal of Heat and Mass Transfer 52 (2009) 5792–5795 5795
For the case Le = 10, the value of Nu=Ra1=2
x (something that we

will refer to as the reduced Nusselt number and denote by Nur)
was calculated for 125 sets of values of Nr, Nb, Nt in the range
[0.1, 0.2, 0.3, 0.4, 0.5] and a linear regression was performed on
the results. This yielded the correlation

Nurest ¼ 0:444� 0:111Nr� 0:245Nb� 0:150Nt; ð33Þ

valid for Nr, Nb, Nt each taking values in the range [0, 0.5], with a
maximum error of about 12%. Clearly an increase in any of the
buoyancy-ratio number Nr, the Brownian motion parameter Nb,
or the thermophoresis parameter Nt leads to a decrease in the value
of the reduced Nusselt number (corresponding to an increase in the
thermal boundary-layer thickness). The maximum error occurs at
the extreme end of the range considered, namely when
(Nr, Nb, Nt) = (0.5, 0.5, 0.5), and the correlation formula overesti-
mates the reduction from the standard fluid value 0.444.

This exercise was repeated for other values of Le, with the re-
sults shown in Table 1.

These results show that the coefficient of Nt varies little as Le
varies. This result is to be expected since, from the form of Eq.
(23), one can anticipate that when Le is large the variable f 0 will de-
cay rapidly as g increases, and then since the term in Nt in Eq. (22)
does not involve f one can anticipate that the contribution from Nt
will not depend markedly on the value of Le. On the other hand, the
coefficient of Nr decreases markedly as Le increase while the coef-
ficient of Nt changes in the other direction. Finally from Table 1 we
observe that the accuracy of the linear regression estimate in-
creases as Le increases.

We believe that for most practical purposes the simple linear
regression formula in Eq. (33) should be adequate. If one wants a
more accurate formula then one can perform a quadratic regres-
sion. For the case Le = 10, for example, we obtained instead of Eq.
(33) the formula

Nurest ¼ 0:444� 0:115Nr� 0:306Nb� 0:189Nt� 0:016Nr2

þ 0:017Nb2 þ 0:042Nt2 þ 0:135NbNtþ 0:007NtNr

þ 0:134NrNb; ð34Þ

which gives a maximum error of just 1.4% over the same range. The
relatively large interactions between Nr and Nb (displayed by the
coefficient of the last term in Eq. (34)), and between Nr and Nt (dis-
played by the coefficient of the third to last term in Eq. (34)) are of
interest. Values of the coefficients for some other cases are pre-
sented in Table 2.
4. Conclusions

We have examined the influence of nanoparticles on natural
convection boundary-layer flow in a porous medium past a vertical
plate, using a model in which Brownian motion and thermophore-
sis are accounted for. In this pioneering study we have employed
the Darcy model for the momentum equation and we have as-
sumed the simplest possible boundary conditions, namely those
in which both the temperature and the nanoparticle fraction are
constant along the wall. This permits a simple similarity solution
which depends on four dimensionless parameters, namely a Lewis
number Le, a buoyancy-ratio parameter Nr, a Brownian motion
parameter Nb, and a thermophoresis parameter Nt. We have ex-
plored the way in which the wall heat flux, represented by a Nus-
selt number Nu, depends on these four parameters. Since we are
dealing with the case of convection driven mainly by heat transfer
we expect that the boundary condition on the nanoparticle fraction
is of lesser importance.
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